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Stick slip phenomenology and causes
Drilling

» Wells are drilled
up to 10 km long

» Force and torque
transfered from
top to bit
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Stick slip phenomenology and causes

Stick slip

Surface forque

Terque [Nm)

w30 =
Tume [sec]

Downhole Revolutions/Minute

Unwanted torisional
oscillations (cyclic sticking
and slipping)

3-10 second period
(dependent on drillstring
length)

Reduces effectiveness, causes
damage

Seen topside as torque
fluctuations



NOT free Oscillations

» System response to impulse @
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NOT free Oscillations

» System response to impulse @

shock/disturbance

> No new energy enters syst_em. <+>
Oscillations die out over time

Bit velocity

P et TN ?T.,:Torqucanbil
W,,: Weight on bit



Stick slip phenomenology and causes

Self excited vibrations
Sustained stick slip must be caused by an unstable equilibrium in the

process dynamics:
1. Regenerative effect in bit-rock interaction (left).

2. Velocity weakening effect in side forces (right).
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Figure: Field examples of stick-slip.



Stick slip phenomenology and causes

The regenerative effect:

» Well known from machine tooling (cutting) processes

» Proposed by [Detournay, E and Defourny, P 1992] to be cause
of stick slip in drilling

» Effect experimentally verified in cutting processes




Stick slip phenomenology and causes

Velocity weakening of side forces

» Stick slip off-bottom: no bit rock interaction. Need different
explanation

» Side force: Interaction between drill string and borehole

» Velocity weakening: Reduced force with increased velocity

> Orp

S(w,x)



Stick slip phenomenology and causes

Goal of presentation

1. Model these two causes of stick slip

2. Discuss mitigation techniques

3. Point out further required improvements
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Mathematical model Distributed drill string model

© Mathematical model
@ Distributed drill string model
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Mathematical model Distributed drill string model

Case for distributed model

Drilling vibrations have a wide frequency spectrum.
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Figure: Spectrogram of field data

25

25

25

12



Mathematical model Distributed drill string model

Case for distributed model

Lumped models have limited applicability.
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Figure: Frequency domain comparison of lumped vs distributed model.
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Mathematical model Distributed drill string model

Distributed Model: Torsional Drill string dynamics
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Mathematical model Distributed drill string model

Distributed Model: Torsional Drill string dynamics

Topside BC

. 1
WwTp = —/ (Tm—T(O, t))
TD
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Mathematical model Distributed drill string model

Distributed Model: Torsional Drill string dynamics

Topside BC

. 1
WwTp = —/ (Tm—T(O, t))
TD

Distributed wave eq.: i € {p, c}

ori(t,x) |, ~Owi(t,x) _
5r T JiG B 0

Owi(t,x) | Omi(t,x)
I T Tox %
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Mathematical model Distributed drill string model

Distributed Model: Torsional Drill string dynamics

Topside BC

i 1
WwTp = —/ (Tm—T(O, t))
TD

Distributed wave eq.: i € {p, c}

wp(Lp, t) = we(0, t)
Ty 12 = 70, )

ori(t,x) |, ~Owi(t,x) _

“or e 70

Owi(t,x) | Omi(t,x)

W " " |
Coupling




Mathematical model Bit-rock regenerative effect

© Mathematical model

@ Bit-rock regenerative effect
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Mathematical model Bit-rock regenerative effect

Field data example

» Example

Increase

of stick slip caused by increased WOB.

in WOB makes equilibrium unstable.

» Not explained by static Coulomb friction!
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Mathematical model Bit-rock regenerative effect

Bit rock interaction
[Detournay, E and Defourny, P 1992, Richard et al., 2007]

Relate bit position to weight and torque on bit.
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Mathematical model Bit-rock regenerative effect

Bit rock interaction
[Detournay, E and Defourny, P 1992, Richard et al., 2007]

Relate bit position to weight and torque on bit.
» Depth of cut:

d(t) = N[Xp(t) = Xp(t — tn(1))]
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Mathematical model Bit-rock regenerative effect

Bit rock interaction
[Detournay, E and Defourny, P 1992, Richard et al., 2007]

Relate bit position to weight and torque on bit.
» Depth of cut:
d(t) = N[Xp(t) = Xp(t — tn(1))]

» Delay between two cutters:

ou(t) — du(t — tn(1)) = o
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Mathematical model Bit-rock regenerative effect

Bit rock interaction
[Detournay, E and Defourny, P 1992, Richard et al., 2007]

Relate bit position to weight and torque on bit.
» Depth of cut:
d(t) = N[Xp(t) = Xp(t — tn(1))]

» Delay between two cutters:

27
Pb(t) — dp(t — tn(t)) =
» Torque and weight on bit:

Wy (t) = aCed(t) + W*

1
Wi (t) = §a2ed(t) + T
17



Mathematical model Bit-rock regenerative effect

Bit rock interaction
[Detournay, E and Defourny, P 1992, Richard et al., 2007]

» Depth of cut:

d(t) = N[Xp(t) — Xb(t — tw(t))]
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Mathematical model Bit-rock regenerative effect

Bit rock interaction
[Detournay, E and Defourny, P 1992, Richard et al., 2007]

» Depth of cut:
d(t) = N[Xp(t) — Xp(t — tn(t))]
» Linearization:

d(t) ~ N[Xb(t) — Xb(t — t/\/)]
(P6(t) — db(t — tn))

Vo
Wo
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Mathematical model Bit-rock regenerative effect

Bit rock interaction
[Detournay, E and Defourny, P 1992, Richard et al., 2007]

» Depth of cut:
d(t) = N[Xp(t) — Xp(t — tn(t))]
» Linearization:

d(t) ~ N[Xb(t) — Xb(t — t/\/)]
(P6(t) — db(t — tn))

)
wo
» Solution in the frequency domain:

D(e) =5 VB~ &) - ay(s)(1 - &)
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Mathematical model Bit-rock regenerative effect

Drill string transfer function

» Employ transfer function description
of drill string

Vi i (s)
W, o5
Qp 1
— — ——gi(s
ALY

(s, C; are axial and torsional
characteristic line impedances.

V,: Perturbed axial bit velocity

£2,: Perturbed angular bit velocity

T,: Torque on bit

W,: Weight on bit
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Mathematical model Bit-rock regenerative effect

Drill string transfer function: Two sections

Drill string transfer function g;(s), i € t, a is determined by:

» Travel time: t; = L/c¢;

» Reflection ceofficient: R;

For pipe and collar section.

— Z—=G
YARSS

Phase (deg)

—100 L L
1 1.5 2 2.5 3

Frequency (Hz)

V: Perturbed axial bit velocity

Q,: Perturbed angular bit velocity

T,: Torque on bit
W,: Weight on bit
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Self excited vibration feedback [Aarsnes, UJF., van de Wouw, N. 2018]

~7| H V»: Perturbed axial bit velocity

£2;: Perturbed angular bit velocity

T,: Torque on bit
W, Weight on bit
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Mathematical model Bit-rock regenerative effect

Characteristic equation

The characteristic equation consists of two weakly coupled loops:
G(s) = Gu(s) + Gi(s)

These can be used to determine linear stability.

[Ga(s) = —ga(9) 21 - e-stzv)}

K
[Gt(s) = g¢(s) ?t 1- e‘“”)-}\

22



Simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Linear stability analysis reveals, for typical parameters:
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Simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Linear stability analysis reveals, for typical parameters:
1. Axial loop is unstable
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Simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Linear stability analysis reveals, for typical parameters:

1. Axial loop is unstable

2. Torsional loop sometimes unstable
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Simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Linear stability analysis reveals, for typical parameters:
1. Axial loop is unstable
2. Torsional loop sometimes unstable

Typical simulation examples without (left), and with stick slip (right):

| ||l||||!l
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What is the effect of the coupling? 23



Mathematical model Bit-rock regenerative effect

Stability map from simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Axial instability increases torsional stability.
0)

Q=1/ty

0) Linear (K, =0), a) K, = 10, b) K, =20, c) K, = 40.
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Mathematical model Off-bottom vibrations and side forces

© Mathematical model

@ Off-bottom vibrations and side forces
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Mathematical model Off-bottom vibrations and side forces

Side force

Assume no bit-rock interaction:
Rotation off bottom.

» Distributed wave eq.: i € {p,c}

67—i(tax) 8w,-(t,x)
ot + Ox
Owi(t,x)  Or(t,x)
le at + 8X = —5((,0,./X)7
» Coulomb frictionsside force
i :\Fr‘
) ')
~r, !
S(w,x) Ll ,
26



Mathematical model Off-bottom vibrations and side forces

Coloumb friction side force

Coulomb friction as an inclusion:

S(w, x) = Fy(x),

W > We

S(w, x) € [-Fc(x), Fe(x)]  |w| < we
S(w, x) = —F4(x), w < —we




Mathematical model Off-bottom vibrations and side forces

Simulation example

Simulation without bit-rock interaction.

300 m |- DLS = m
S =3°/30

INC = 40° /DLS = 3°/30m

1250 m

INC=45°
2700 m

DLS = 2°/30m
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Mathematical model Off-bottom vibrations and side forces

Field data ex 1. 1,733 meter [Aarsnes, UJF and Shor, RJ 2018]

Top dr1ve angular velouty, wrp, bit depth = 1733m

300
wrp model wTD act Whit model - wWpit Mln/Max act‘
— r Kl | -
s 20 noe A :“4, noan AN 4
) bl ’uu: ./“ [T S r!-' [
~ i o ' " *l i |" Wyl
~ 100 i ::I E‘I‘V-', L b " i i H ' | “ i
GRS S SR e
i I|lu I i
0 Tl I lIllI IR .'_.-I el et byl MY e T
0 10 20 30 40 50 60
Time (s)
Motor torque, 7,
30 Ty Simulated Tm Recorded |
E
Z,
=
10 ,
o . | . .
0 10 20 30 40 50 60
Time (s)
Comparison with off-bottom rotation

300 m DLS = 3°/30m

/DLS= 3°/30m

2700 m

/
DLS =2°/30m £—

(no bit-rock interaction).
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Off-bottom vibrations and side forces
Field data ex 2: 2,2506 meter [Aarsnes, UJF and Shor, RJ 2018]

Top drive angular velocity, wrp, bit depth = 2506m

o \ \ \ \ \ \ \
1000 1005 1010 1015 1020 1025 1030 1035
Time (s)

Motor torque, 7,

300 m | DLS = 2°/30m
p

\ \ \ \ \ \ !
1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050
Time (s)
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Avoidance: Industrial Controllers

© Avoidance: Industrial Controllers
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Avoidance: Industrial Controllers

Top drive control

o wp
C(s)

Topside BC

i 1
WwTp = I—(Tm = 7'(07 t))
TD
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Avoidance: Industrial Controllers

Top drive control

o wp
—= )

Topside BC

i 1
WwTp = I—(Tm = T(O, t))
TD

> Top drive is controlled by motor
torque 7, based on RPM
measurements wrp.
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Avoidance: Industrial Controllers

Top drive control

C(s)

Topside BC

i 1
WwTp = I—(Tm = T(O, t))
TD

> Top drive is controlled by motor

torque 7, based on RPM
measurements wrp.

» Control approach: Reduce the
wave reflection.

32



Avoidance: Industrial Controllers

Top drive control

» Topside BC (Laplace transformed):

1
Swrp = /—(Tm —7(0))
D
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Avoidance: Industrial Controllers

Top drive control

» Topside BC (Laplace transformed):
1
Swrp = /—(Tm —7(0))
D

» Top drive control

™ = C(S)WTD
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Avoidance: Industrial Controllers

Top drive control

» Topside BC (Laplace transformed):

1
Swrp = /—(Tm —7(0))
D

» Top drive control

™ = C(S)WTD
» Then top drive impedance is:
7(0
Zi(s) = (—3(5) = C(s) + lps

wT
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Avoidance: Industrial Controllers

Top drive control

» Topside BC (Laplace transformed):
1
Swrp = /—(Tm —7(0))
D

» Top drive control
™ = C(S)WTD

» Then top drive impedance is:

Z(s) = Z;(_TO[?(S) = C(s) + Ips
» Wave reflection:
. Z(jw) — Cp
R = | S

where (, is pipe impedance.
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Stick slip mitigation by control [Kyllingstad, A. 2017]

Industrial available top Inpedance
drive speed control: Z ﬁ'__ i
1. Stiff speed control High Pass  Low Pass
wsp  + ; K, +
2. Tuned PI Control: O K+ 7= o
SoftTorque/SoftSpeed PI Controller [ .
Tros | Motor Inertia
. 1 | wo
3. Impedance Matching: [Ftens
Ztorque Speed Filter

34



Avoidance: Industrial Controllers

Stick slip mitigation by control

Top drive speed control:

1. Stiff speed control
> K, =100,
» K;=5Ilmp
(p is Pipe impedance.
I7p is top drive inertia.

» Top drive RPM tracks
set-point.

Impedance

1

Low Pass

High Pass

1

J

— K, + &

P

PI Controller

To

Motor Inertia

wo

1+tens

Speed Filter
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Avoidance: Industrial Controllers

Bit rock interaction

Top drive speed control:

Impedance

2. Tuned PI Control: @ T | e b

Soft Torque/SoftSpeed Hieh Pase  Low Poss
> = wsp 41 :
Kp =4 - T o m+ 8l 0 -
>_ Ki - (27ch) ITD - PT Controller I\
fc Is frequency of Trns | Motor Inertia
minimal reflectivity. : ] wo
1+tens
» Reduces reflection in Speed Filter

limited frequency
range.



Avoidance: Industrial Controllers

Bit rock interaction

Top drive speed control:

3. Impedance
Matching:
Ztorque
> At high
frequencies: Top
drive controlled to
cancel reflections.
> At low frequencies:
Follow setpoint

llllllt'(l.‘l]u'(‘

1
Z = T
thps 1+tips

— K, + &

High Pass

Low Pass

P

PI Controller

1

To

Motor Inertia

Wo

I+te,s

Speed Filter
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Reflectivity Comparison [Aarsnes, UJF. et al. 2018]

1. Stiff Speed: Full
reflection

2. SoftTorque/speed:
Limited reflection
reduction

3. ZTorque: Improved
reflection reduction.
Limited by:

» Tracking
performance (filter
cut-off)

P Instrumentation
(ideal case
considered)

1.2

o o
Y o

Reflection coefficient
°
=

021

= Siiff controller
e SoftTorque
ZTorque

10

10°

10 10 10° 10t
Hz
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Avoidance: Industrial Controllers

Stability map comparison: Off bottom model [Aarsnes, UJF. et al. 2018]

» Soft Torque/Speed works in some cases.

> Ztorque effective at avoiding stick slip, but yields slower control.

= 150 =
s s
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g S
o 2 100
] 3
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@ o
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3 H
o I e Sy
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< | < O 1, A o O e O T
g0h g2 ) s JUTER G T (4o fy e[ t
g n ! S hdl ’llj ilerE N !
IR ANV AV E T £ T 2T o S, E"""\r"""'V"‘V V'
glo: 1 ’ %10:!' W, 1N £) ll \l ‘, \ |' 1 ! f A
2 Wit 2 i v 1] L 1 H
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e i e
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Avoidance: Industrial Controllers

Simulation comparison [Aarsnes, UJF. et al. 2018]

Amplitude (kNm) Amplitude (kNm)

Amplitude (kNm)

20
1
16
14
12
10
8
s
4
2

01 015 02 0.25 03 0.35 04
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Avoidance: Industrial Controllers

Linear stability analysis: bit-rock interaction

» Higher numbers denote higer tendency to instability.

» X-axis denotes reflection coefficient.
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Current state and open problems

@ Current state and open problems
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Current state and open problems

Current state

» The cause and potential mitigation of stick slip is now quite well
understood:
1. Regenerative effect in the bit rock interaction
2. Velocity weakening of the side forces
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Current state and open problems

Current state

» The cause and potential mitigation of stick slip is now quite well
understood:

1. Regenerative effect in the bit rock interaction
2. Velocity weakening of the side forces

» Models capable of reproducing the phenomena.
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Current state and open problems

Current state

» The cause and potential mitigation of stick slip is now quite well
understood:

1. Regenerative effect in the bit rock interaction
2. Velocity weakening of the side forces

» Models capable of reproducing the phenomena.

» Stick slip can be removed by lowering/cancelling the reflection.
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Current state and open problems

Open problems |

Modeling gap for the bit rock interaction to be
useable in practice:
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Current state and open problems

Open problems |

Modeling gap for the bit rock interaction to be
useable in practice:

> Mathematical representation of a realistic
PDC bit.
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Current state and open problems

Open problems |

Modeling gap for the bit rock interaction to be
useable in practice:

> Mathematical representation of a realistic
PDC bit.

» Model stability maps should be tested and

calibrated against experimental results and
field data.
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Current state and open problems

Open problems |

Modeling gap for the bit rock interaction to be
useable in practice:

> Mathematical representation of a realistic
PDC bit.

» Model stability maps should be tested and
calibrated against experimental results and
field data.

» Goal: To predict occurence, optimize

operational parameters, improve bit design.
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Current state and open problems

Open problems I

» Low predicitve power: Unkown friction factors for side forces.

> Orp

S(w,x)
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Current state and open problems

Open problems I

» Low predicitve power: Unkown friction factors for side forces.

» Comprehensive model need both side forces and bit-rock

interaction.

> Orp

S(w,x)
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Current state and open problems

Open problems I

» Low predicitve power: Unkown friction factors for side forces.

» Comprehensive model need both side forces and bit-rock
interaction.

» NOT COVERED: Izgteral vibrations.

@1p

S(w,x)
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Current state and open problems

Summary |: Causeses and Modeling

» Two distinct known causes of torsional stick slip:

1. Self regenerativ effect of the bit-rock interaction
2. Velocity weakening in along string side forces

» Distributed (high order) models needed to have practical
relevance.
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Current state and open problems

Summary Il: Current status and remaining challenges

» Remaining key modeling challenges:

1. Make bit-rock interaction useable in practice
. Test model predictions against experimental and field data
Model both side forces and bit-rock interaction.
Understand coupling to lateral vibrations (whirl)

LNSRS

» Existing industrial controllers
1. Approach: reduce reflection coefficient
2. Effective, but limited by physical and instrumentation constraints
3. Harder for larger top drives (high inertia).
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Current state and open problems
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