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Stick slip phenomenology and causes

Drilling

I Wells are drilled
up to 10 km long

I Force and torque
transfered from
top to bit

3-10 km

Torque and
 force

Cutting
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Stick slip phenomenology and causes

Stick slip

I Unwanted torisional
oscillations (cyclic sticking
and slipping)

I 3-10 second period
(dependent on drillstring
length)

I Reduces e�ectiveness, causes
damage

I Seen topside as torque
�uctuations
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Stick slip phenomenology and causes

NOT free Oscillations

I System response to impulse
shock/disturbance

I No new energy enters system.
Oscillations die out over time
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Stick slip phenomenology and causes

Self excited vibrations

Sustained stick slip must be caused by an unstable equilibrium in the
process dynamics:

1. Regenerative e�ect in bit-rock interaction (left).

2. Velocity weakening e�ect in side forces (right).
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Figure: Field examples of stick-slip.
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Stick slip phenomenology and causes

The regenerative e�ect:

I Well known from machine tooling (cutting) processes

I Proposed by [Detournay, E and Defourny, P 1992] to be cause
of stick slip in drilling

I E�ect experimentally veri�ed in cutting processes
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Stick slip phenomenology and causes

Velocity weakening of side forces

I Stick slip o�-bottom: no bit rock interaction. Need di�erent
explanation

I Side force: Interaction between drill string and borehole

I Velocity weakening: Reduced force with increased velocity
ωTD

x=L

x

S(ω,x)

τp(t,x)
ωp(t,x) τc(t,x)

ωc(t,x)

9/48



Stick slip phenomenology and causes

Goal of presentation

1. Model these two causes of stick slip

2. Discuss mitigation techniques

3. Point out further required improvements
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Mathematical model Distributed drill string model

Case for distributed model

Drilling vibrations have a wide frequency spectrum.

Figure: Spectrogram of �eld data
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Mathematical model Distributed drill string model

Case for distributed model

Lumped models have limited applicability.

Figure: Frequency domain comparison of lumped vs distributed model.
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Mathematical model Distributed drill string model

Distributed Model: Torsional Drill string dynamics

ωTD

τ(t,x)
ω(t,x)

x

INC x=L

Topside BC

ω̇TD =
1

ITD
(τm − τ(0, t))

Distributed wave eq.: i ∈ {p, c}
∂τi (t, x)

∂t
+ JiG

∂ωi (t, x)

∂x
= 0

Jiρ
∂ωi (t, x)

∂t
+
∂τi (t, x)

∂x
= 0,

Coupling

ωp(Lp, t) = ωc(0, t)

τp(Lp, t) = τc(0, t)
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Mathematical model Bit-rock regenerative e�ect
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Mathematical model Bit-rock regenerative e�ect

Field data example

I Example of stick slip caused by increased WOB.

I Increase in WOB makes equilibrium unstable.

I Not explained by static Coulomb friction!
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Mathematical model Bit-rock regenerative e�ect

Bit rock interaction
[Detournay, E and Defourny, P 1992, Richard et al., 2007]

Relate bit position to weight and torque on bit.

I Depth of cut:

d(t) = N[Xb(t)− Xb(t − tN(t))]

I Delay between two cutters:

φb(t)− φb(t − tN(t)) =
2π

N

I Torque and weight on bit:

Wb(t) = aζεd(t) + W ∗

Wb(t) =
1

2
a2εd(t) + T ∗
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Mathematical model Bit-rock regenerative e�ect

Bit rock interaction
[Detournay, E and Defourny, P 1992, Richard et al., 2007]

I Depth of cut:

d(t) = N[Xb(t)− Xb(t − tN(t))]

I Linearization:

d(t) ≈ N[Xb(t)− Xb(t − tN)]

− v0
ω0

(φb(t)− φb(t − tN))

I Solution in the frequency domain:

D(s) =
N

s

[
Vb(S)(1− e−stN )− v0

ω0
Ωb(s)(1− e−stN )

]
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Mathematical model Bit-rock regenerative e�ect

Drill string transfer function

I Employ transfer function description
of drill string

Vb

Wb
= − 1

ζa
ga(s)

Ωb

Tb
−− 1

ζt
gt(s)

ζa, ζt are axial and torsional
characteristic line impedances.
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Mathematical model Bit-rock regenerative e�ect

Drill string transfer function: Two sections

Drill string transfer function gi (s), i ∈ t, a is determined by:

I Travel time: ti = L/ci

I Re�ection ceo�cient: Ri = ZL−ζi
ZL+ζi

For pipe and collar section.
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Mathematical model Bit-rock regenerative e�ect

Self excited vibration feedback [Aarsnes, UJF., van de Wouw, N. 2018]
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Mathematical model Bit-rock regenerative e�ect

Characteristic equation

The characteristic equation consists of two weakly coupled loops:

G (s) = Ga(s) + Gt(s)

These can be used to determine linear stability.

22/48



Mathematical model Bit-rock regenerative e�ect

Simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Linear stability analysis reveals, for typical parameters:

1. Axial loop is unstable

2. Torsional loop sometimes unstable

Typical simulation examples without (left), and with stick slip (right):

What is the e�ect of the coupling?

23/48



Mathematical model Bit-rock regenerative e�ect

Simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Linear stability analysis reveals, for typical parameters:

1. Axial loop is unstable

2. Torsional loop sometimes unstable

Typical simulation examples without (left), and with stick slip (right):

What is the e�ect of the coupling?

23/48



Mathematical model Bit-rock regenerative e�ect

Simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Linear stability analysis reveals, for typical parameters:

1. Axial loop is unstable

2. Torsional loop sometimes unstable

Typical simulation examples without (left), and with stick slip (right):

What is the e�ect of the coupling?

23/48



Mathematical model Bit-rock regenerative e�ect

Simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Linear stability analysis reveals, for typical parameters:

1. Axial loop is unstable

2. Torsional loop sometimes unstable

Typical simulation examples without (left), and with stick slip (right):

115 116 117 118 119 120
7t

0

5

10

15

20

25
c)

Vb

+b

115 116 117 118 119 120
7t

0

5

10

15

20

25
e)

Vb

+b

What is the e�ect of the coupling? 23/48



Mathematical model Bit-rock regenerative e�ect

Stability map from simulations [Aarsnes, UJF., van de Wouw, N. 2019]

Axial instability increases torsional stability.

10110010−1

101

100

10−1

Ω0 = 1/tN

V 0

0)

0) Linear (Ka = 0), a) Ka = 10, b) Ka = 20, c) Ka = 40. 24/48



Mathematical model O�-bottom vibrations and side forces
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Mathematical model O�-bottom vibrations and side forces

Side force

ωTD

x=L

x

S(ω,x)

τp(t,x)
ωp(t,x) τc(t,x)

ωc(t,x)

Assume no bit-rock interaction:
Rotation o� bottom.

I Distributed wave eq.: i ∈ {p, c}

∂τi(t, x)

∂t
+ JiG

∂ωi(t, x)

∂x
= 0

Jiρ
∂ωi(t, x)

∂t
+
∂τi(t, x)

∂x
= −S(ωi , x),

I Coulomb friction side force
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Mathematical model O�-bottom vibrations and side forces

Coloumb friction side force

Coulomb friction as an inclusion:
S(ω, x) = Fd(x), ω > ωc

S(ω, x) ∈ [−Fc(x),Fc(x)] |ω| < ωc

S(ω, x) = −Fd(x), ω < −ωc
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Mathematical model O�-bottom vibrations and side forces

Simulation example

Simulation without bit-rock interaction.

DLS = 2o/30m

DLS = 3o/30m

DLS = 3o/30m

 INC = 45 o

 INC = 40 o

300 m

1250 m

2700 m
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Mathematical model O�-bottom vibrations and side forces

Field data ex 1. 1,733 meter [Aarsnes, UJF and Shor, RJ 2018]
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0

100

200

300

(R
P
M
)

Top drive angular velocity, !TD , bit depth = 1733m
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Comparison with o�-bottom rotation (no bit-rock interaction).
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Mathematical model O�-bottom vibrations and side forces

Field data ex 2: 2,2506 meter [Aarsnes, UJF and Shor, RJ 2018]
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Avoidance: Industrial Controllers
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Avoidance: Industrial Controllers

Top drive control

ωTD

τ(t,x)
ω(t,x)

x

INC x=L

τm C(s)
Topside BC

ω̇TD =
1

ITD
(τm − τ(0, t))

I Top drive is controlled by motor
torque τm based on RPM
measurements ωTD .

I Control approach: Reduce the
wave re�ection.
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Avoidance: Industrial Controllers

Top drive control

I Topside BC (Laplace transformed):

sωTD =
1

ITD
(τm − τ(0))

I Top drive control

τM = C (s)ωTD

I Then top drive impedance is:

ZL(s) =
τ(0)

ωTD
(s) = C (s) + ITDs

I Wave re�ection:

R(ω) =

∣∣∣∣ZL(jω)− ζp
ZL(jω) + ζp

∣∣∣∣ ,
where ζp is pipe impedance.
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Avoidance: Industrial Controllers

Stick slip mitigation by control [Kyllingstad, A. 2017]

Industrial available top
drive speed control:

1. Sti� speed control

2. Tuned PI Control:
SoftTorque/SoftSpeed

3. Impedance Matching:
Ztorque
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Avoidance: Industrial Controllers

Stick slip mitigation by control

Top drive speed control:

1. Sti� speed control
I Kp = 100ζp
I Ki = 5ITD

ζp is Pipe impedance.
ITD is top drive inertia.

I Top drive RPM tracks
set-point.

35/48



Avoidance: Industrial Controllers

Bit rock interaction

Top drive speed control:

2. Tuned PI Control:
SoftTorque/SoftSpeed

I Kp = 4ζp
I Ki = (2πfc)2I 2TD

fc is frequency of
minimal re�ectivity.

I Reduces re�ection in
limited frequency
range.
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Avoidance: Industrial Controllers

Bit rock interaction

Top drive speed control:

3. Impedance
Matching:
Ztorque
I At high

frequencies: Top
drive controlled to
cancel re�ections.

I At low frequencies:
Follow setpoint
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Avoidance: Industrial Controllers

Re�ectivity Comparison [Aarsnes, UJF. et al. 2018]

1. Sti� Speed: Full
re�ection

2. SoftTorque/speed:
Limited re�ection
reduction

3. ZTorque: Improved
re�ection reduction.
Limited by:
I Tracking

performance (�lter
cut-o�)

I Instrumentation
(ideal case
considered)

10-4 10-3 10-2 10-1 100 101
0

0.2

0.4

0.6

0.8

1

1.2

Stiff controller
SoftTorque
ZTorque
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Avoidance: Industrial Controllers

Stability map comparison: O� bottom model [Aarsnes, UJF. et al. 2018]

I Soft Torque/Speed works in some cases.

I Ztorque e�ective at avoiding stick slip, but yields slower control.
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Avoidance: Industrial Controllers

Simulation comparison [Aarsnes, UJF. et al. 2018]
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Avoidance: Industrial Controllers

Linear stability analysis: bit-rock interaction

I Higher numbers denote higer tendency to instability.

I X-axis denotes re�ection coe�cient.
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Current state and open problems

1 Stick slip phenomenology and causes

2 Mathematical model
Distributed drill string model
Bit-rock regenerative e�ect
O�-bottom vibrations and side forces

3 Avoidance: Industrial Controllers

4 Current state and open problems

42/48



Current state and open problems

Current state

I The cause and potential mitigation of stick slip is now quite well
understood:

1. Regenerative e�ect in the bit rock interaction
2. Velocity weakening of the side forces

I Models capable of reproducing the phenomena.

I Stick slip can be removed by lowering/cancelling the re�ection.

43/48



Current state and open problems

Current state

I The cause and potential mitigation of stick slip is now quite well
understood:

1. Regenerative e�ect in the bit rock interaction
2. Velocity weakening of the side forces

I Models capable of reproducing the phenomena.

I Stick slip can be removed by lowering/cancelling the re�ection.

43/48



Current state and open problems

Current state

I The cause and potential mitigation of stick slip is now quite well
understood:

1. Regenerative e�ect in the bit rock interaction
2. Velocity weakening of the side forces

I Models capable of reproducing the phenomena.

I Stick slip can be removed by lowering/cancelling the re�ection.

43/48



Current state and open problems

Open problems I

Modeling gap for the bit rock interaction to be
useable in practice:

I Mathematical representation of a realistic
PDC bit.

I Model stability maps should be tested and
calibrated against experimental results and
�eld data.

I Goal: To predict occurence, optimize
operational parameters, improve bit design.
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Current state and open problems

Open problems II

I Low predicitve power: Unkown friction factors for side forces.

I Comprehensive model need both side forces and bit-rock
interaction.

I NOT COVERED: Lateral vibrations.
ωTD

x=L

x

S(ω,x)

τp(t,x)
ωp(t,x) τc(t,x)

ωc(t,x)
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Current state and open problems

Summary I: Causeses and Modeling

I Two distinct known causes of torsional stick slip:

1. Self regenerativ e�ect of the bit-rock interaction
2. Velocity weakening in along string side forces

I Distributed (high order) models needed to have practical
relevance.
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Current state and open problems

Summary II: Current status and remaining challenges

I Remaining key modeling challenges:

1. Make bit-rock interaction useable in practice
2. Test model predictions against experimental and �eld data
3. Model both side forces and bit-rock interaction.
4. Understand coupling to lateral vibrations (whirl)

I Existing industrial controllers

1. Approach: reduce re�ection coe�cient
2. E�ective, but limited by physical and instrumentation constraints
3. Harder for larger top drives (high inertia).
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